EARLY APPLICATION
DEVELOPMENT/TUNING AND
APPLICATION CHARACTERIZATION/
SEGMENTATION

Laxmikant Kale

PARALLEL PROGRAMMING LABORATORY, SIEBEL CENTER
FOR COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT
URBANA-CHAMPAIGN, USA

(KALE@ILLINOIS.EDU)

Abstract

This position paper makes two separate, only tangentially
related points:

1. A research program is necessary to produce tools
and techniques that allow application developers
to develop and tune applications for future exas-
cale machines, well before the machines are
deployed.

2. In order to cope with, or facilitate, segmentation of
exascale architectures, it is necessary to carry out
an extensive study characterizing the needs and
behaviors of applications that are expected to run
on exascale machines.

Key words: emulation, exascale machines, application
characterization, early application development, simulation

The International Journal of High Performance Computing Applications,
Volume 23, No. 4, Winter 2009, pp. 411-412

DOI: 10.1177/1094342009347703

© The Author(s), 2009. Reprints and permissions:
http://www.sagepub.co.uk/journalsPermissions.nav

1 Supporting Early Application
Development and Tuning

Applications running on exascale machines are likely to
exhibit structural complexity. For example, one will cer-
tainly not refine the physical domain uniformly, but
rather use adaptive and dynamic refinements whenever
possible; multi-module and multi-physics codes will pre-
dominate, with computations from multiple modules
interleaving on overlapping sets of processors. Commu-
nication and computation phases would not be neatly
separated, but rather adaptively overlapped to mitigate
impacts of communication latencies and to distribute
communication over time.

The machines in the exascale timeframe are also
likely to be more complex in certain ways. Nodes may
consist of a mix of multicore and accelerator chips and
individual chips may contain heterogeneous cores.
Interconnection topologies and topology-aware map-
ping of objects to processors may become increasingly
important for performance as the diameters of networks
increase.

These factors make developing and tuning an applica-
tion for an exascale machine time-consuming. At the
same time, since the exascale machine is an expensive
resource, one would like strategically important applica-
tions to start running efficiently on a new exascale machine
as soon as it is deployed.

Therefore, we need an ability to develop and tune an
application for a particular future machine well before
the machine is deployed. The software community
should explore multiple approaches towards developing
such a capability. A promising approach is to develop a
full-scale virtual environment on which a future exascale
application can be developed, tested and tuned. Using
such an environment, application developers can, for
example, identify scalability bugs in their data structures,
as well as examine detailed performance profiles of their
application runs at scale. Such an environment may take
advantage of the fact that many Computer Science and
Engineering (CSE) applications are repetitive in nature
and simulating a few timesteps or iterations (at slower
speeds) may be adequate for testing and tuning purposes.

One possibility is to use emulation based on virtualiza-
tion and/or overdecomposition to allow at-scale develop-
ment and testing using a machine, say, 10 times smaller
than the target exascale machine. For true emulation,
techniques for handling the mismatch between the emu-
lating machine and the target machine need to be devel-
oped. For performance tuning, one can explore a variety
of techniques, including detailed simulation that utilizes
the information gathered during the emulation, as well as
the machine and network characteristics to predict per-
formance or, at least, identify potential performance bot-
tlenecks.



2 Potential Segmentation of Exascale
Architectures

It is possible that the class of exascale machines will be
segmented into multiple categories. A likely segmenta-
tion is based on two dimensions: memory-per-core and
bisection bandwidth. Of the four possibilities these two
dimensions lead to, it is likely that at least two extremes
would be populated. For example, one can construct an
inexpensive machine with little memory per core and a
near-neighbor network. It can compete effectively with
machines that have full bisection bandwidth and large
dynamic random access memory (DRAM) per core, con-
sistent with today’s balance criteria, IF there are significant
numbers of applications that can exploit such machines.
Many arguments can be made as to why each of the four
segments is useful (see below). However, to settle this
issue with the level of certainty that the vendors and fund-
ing agencies feel comfortable in designing and deploying
architectures in each quadrant, a careful and comprehen-
sive study of potential exascale applications is necessary.

One argument suggesting that several applications will
require low memory per core is as follows (some applica-
tions, such as biomolecular simulations, are demonstra-
bly in this category as the number of atoms involved in
protein-DNA-membrane assemblies is relatively small).
For continuously modeled spatial domains, the Courant
limit or the non-linear increase number of iterations for lin-
ear system solvers implies that, as resolution is increased,
the memory needed increases as O(n3) while the computa-
tion time increases at a higher rate, as large as O@m* in
many cases. Assuming the time for running a simulation is
a constant (because that is related to the life-time con-
stants of humans — such as a 3-hour run for a weather
forecast, an overnight run for an engineering design or a
“hero” science run lasting a few months), this implies
that memory capacity needs to increase more slowly
than processing speeds. This argues for the utility of
low-memory-per-core machines. It so happens that mem-

ory costs are a significant component of supercomputer
costs and interesting low-memory designs that effec-
tively utilize the pin-bandwidth of individual chips are
feasible. So, such a class is worth exploring.

However, of course, rather than relying on abstract argu-
ments, we should study specific applications to see if they
can run within such restricted regimes. This exercise will
require us to identify at least an initial set of applications
that can run at the exascale and have a specific societal (or
pure science) benefit. It will force the community to do at-
scale studies of such applications, possibly using the “early
development and analysis” methodologies mentioned ear-
lier. Explicit consideration of costs of architectures needed
while designing next-generation applications is necessary
to counteract the current, non-sustainable, trend of over-
provisioning machines for all classes of applications. The
exercise in characterizing applications will also identify
bottlenecks that all applications may face, underscoring
needs for architectural innovation in specific areas. Finally,
it will identify classes of architectures that should be
explored and deployed at the exascale.

Author Biography

Laxmikant Kale is a Professor of Computer Science at
the University of Illinois at Urbana-Champaign, where
he has been a faculty member since 1985. He received a
Ph.D. in computer science from State University of New
York, Stony Brook, in 1985. His research has involved
various aspects of parallel computing, with a focus on
enhancing performance and productivity via adaptive
runtime systems, and designing programming abstrac-
tions based on use-cases from multiple applications. He
led the development of Charm++ and AMPI program-
ming systems that embody an adaptive runtime system.
He has collaboratively developed well-known parallel
applications in areas including biophysics, astronomy
and quantum chemistry. He was co-recipient of a Gordon
Bell award in 2002.



